Tag Archives: medicine

Telomerase In Mice

[mage lang=”en|es|fr|en” source=”flickr”]telomerase in mice[/mage]

Watch this remarkable video from ABC Television showing the lab results of two mice.

One was treated with a telomerase suppliment and the other was not. Both mice are the same age and you can see the results of the mouse that was treated showing signs of age reversal.

The mouse’s hair is growing back from where it was once going bald. The grey hairs have been replaced with normal color hair of a younger mouse.

This holds a great deal of promise for human response to telomere suppliment treatments.

Telomerase Drug

telomerase drug
What are scientists still unsure about in regards to telomerase?

I’ve heard that there has been a lot of development in terms of producing drugs that can decrease the amount of telomerase in cancer cells but what are they still unsure about?

Before a cell can divide, the DNA of the chromosomes must duplicate itself. DNA is built up of molecular units called nucleotides, which come in four types abbreviated as A, C, G, and T. Although most of the DNA consists of long complex nucleotide sequences that hold the genetic code, the telomere sections have much simpler sequences repeated many times. The telomere sections have no known function in the genetic code. Each process of duplication results in the loss of a small section of the DNA. The telomere acts as a sort of sacrificial lamb; by losing part of its length, the essential DNA sequences are retained.


Telomerase is normally active only when it is important for cells to continue multiplying, such as during embryonic development. After birth, telomerase becomes inactive, except for the production of sperm cells in the male. However, telomerase activity has been found in up to 90% of all cancers, and has shown promise as a diagnostic tool. In certain cancers, increased activity levels may identify patients that have either favorable or unfavorable prognostic outcomes; while in other cases can distinguish between benign and malignant tumors.

The medical establishment received the report on the relationship between telomerase and cancer with great enthusiasm. Researchers foresaw the development of telomerase inhibitors as new and unique weapons against cancer. After all, if the telomerase in cancer cells could be disactivated, the cancer cells would stop dividing and die after a period like normal cells. Since then, reality has set in, and some unique problems in the development of telomerase inhibitors as therapeutic agents have become apparent.

It appears that telomerase does not become active until the telomeres reach a certain critical minimum size after around 20-30 cell divisions when the cell is approaching the senescence stage. How does this relate to cancer? It may mean that it would not work on very small tumors, and only with patients with more advanced tumors. In addition, some cancers seem to circumvent the need for telomerase. They are able to protect their chromosomes by other means.

Interestingly, work reported last year by the Harvard Medical School indicated that in mice at least, a lack of telomerase can also lead to cancer. The researchers provided an explanation. If the chromosomes of normal cells are deprived of their protective telomere tips, they might break, fuse, or undergo other changes leading to a loss or gain of genes. This, of course, is a hallmark of cancer.

In spite of these reservations, research activity in the area of telomerase inhibitors remains intense, and clinical trials should begin soon. In order to be useful, it is first necessary to demonstrate that a particular cancer gives rise to telomerase activity. In this instance, not only does telomerase activity represent a good diagnostic tool, but could present a very specific target for an anticancer drug. This specificity should make it less toxic than the usual chemotherapeutic drugs, since it would not effect normal cells. Although telomerase inhibitors may not prove to be magic bullets against cancer, they promise to be valuable additions to cancer treatment

Telomerase Article

[mage lang=”en|es|fr|en” source=”flickr”]telomerase article[/mage]
RWers to hate science?

Elizabeth Blackburn, a molecular biologist and biochemist at the University of California at San Francisco known for her work on the division of DNA and the cell is the winner of the Nobel Prize in 2009. She was fired by Bush in 2004. Its was something to do with the religious beliefs of Bush. http://www.publicbroadcasting.net/kunc/news.newsmain/article/0/0/1562406/US/US.trio.wins.medicine.Nobel.for.telomerase

Yes, hate science right.

Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cer

Telomerase And Aging

[mage lang=”en|es|fr|en” source=”flickr”]telomerase and aging[/mage]
Biochemistry Question.?

The electron transport chain is great at producing ATPs very efficently. There is a cost. Production of Peroxides and Superoxides which are very reactive free radicals that cause damage and aging of the mitochondria. What research is/ has been conducted to combat this problem. Is anything in development that could seriously extend the lives of ever member of the human race? If something could keep ATP production optimal without minimal production of the free radicals. We’d live a long time. Oh yeah.. keep telomerase from shedding the telomeres of the DNA alpha helices.

I suppose this question is asking about antioxidant research. EGCg is a well-studied antioxidant isolated from green tea. It has been shown to reduce the expression of cancer-associated proteins in vitro. However, the concentrations of the chemical required for this effect would be hard to sustain in the human body. Additionally, antioxidants have a very short half life (they are used up fast), so any sort of antioxidant therapy would be extremely hard to actually do.